It’s now over a year since Tim’s passing. There is this story I need to tell:
On a cold, grey Saturday in December 2022, I took the metro to the other side of Paris to meet Tim’s friend, Jorge. Tim and Jorge met when Tim was studying in Paris. When Tim’s cancer returned, Jorge went to North Carolina to see Tim and his family. When he was there, Tim gave Jorge several rolls of bulk film to bring to back to Paris for me.
Jorge and I met up in a tiny café near where he worked. Soon after meeting, I realised that I had already seen his photographs: Tim had published them in Leicaphilia. You remember them, I am sure, in particular the guy with the mask on his head with two round eye-holes. Fantastic and mysterious and funny. On the cold winter morning, Jorge and I talked for maybe an hour or two about photography and many other things. I showed him a few of my own photographs on my telephone. “I don’t know,” he said, “but I think you need to get closer”. Looking at my photographs, I would have to agree. At the end, it was almost lunchtime, we parted company and Jorge handed me over three black bags on which were written ‘TMAX’ and ‘Kentmere’ on yellowing masking tape. Tim had said to me a few months previously: “This should keep you in film for a while” and indeed it seemed to be a lot. A quick calculation suggested that it was around 60 rolls of 36 exposures each. But it was bulk film, not already rolled into cartridges. I had never rolled bulk film into cassettes before.
Back on the other side of Paris, I went searching on the internet for a bulk roller and film cartridges, although I knew that at first I could just re-use a few of the old cassettes from film I was currently shooting. After developing and printing my own films for almost ten years now, bulk rolling was the ”final frontier”: something I had yet to try (there is still one thing left, I guess: mixing your own film developer from scratch. Not ready to go there yet). It was almost impossible to find good-quality metal cassettes: eventually, I tracked down an ebayer in … Kyiv, Ukraine. At one point many cameras were made there, and I supppose there must be mountains of film cassettes still lying around. The cartridges arrived early in the new year, and I couldn’t imagine the environment they must have come from. I did try loading one cassette without the bulk loader, in the darkroom at the Observatory. In the darkness, I spooled out what (I thought) was the right amount of film and prepared to put into the cassette. At that moment, the whole darkroom lit up. A notification on my telephone. Luckily, the light from the screen was partially blocked by my body and the film was undamaged.
By the end of December, I had rolled my first cassettes of Tim’s film. I did what I always do: I went for a walk around town and took photographs in the grey, shadowless winter light. This flat light is perfect for photography: no need to change any settings on the camera. But when I developed and scanned the first rolls them, I was disappointed to see the streets and buildings of Paris under a heavy curtain of grain. But I soon realised: this was obviously a message from Tim. On Leicaphilia he wrote (I am sure) thousands of words about the nature of film grain and how it was (mostly) different from electronic noise captured by digital detectors. Tim loved grain, and his images were bathed in it. Some of it real, some of it cooked up with software. I was not expecting TMAX (known to be a fine-grained film) to look like this, but perhaps the rolls had been too long in Tim’s freezer. I tried a few different developers (including one Tim sent me just before he died), but the grain remained. Obviously, this was Tim’s plan. It’s a message, it’s a message, I repeated to myself.
Soon, walking around with those rolls of film in my camera, I felt different. To start with, I knew that perhaps I shouldn’t care too much about getting the exposure or focus exactly right: with so much more grain, such considerations were secondary. I felt I had essentially a limitless amount of film, so perhaps I could take more photographs and be less careful? Because being careful doesn’t always lead to good photographs. Over the past few years, I’d see something, stop walking, take a photograph, then walk on. Time to try something different. I took off the 50mm lens and put on the small compact skopar 35mm lens, actually the first lens I bought with my M6 in 2015, and (I knew) a favourite of Tim’s. I decided to take this film with me on a few of my 2023 trips. The risk was that the images be lost to waves of grain didn’t bother me. When I came back from a trip to North America, on the scans I saw the Niagra Falls through a curtain of static and mist. It was fine.
I went to Ireland and the green hills dissolved under a grainy torrent. Looking at the scans, I realised it didn’t look so bad.
Euclid launched in July, and I was in Paris almost all of July and August. There are quite a few stories to tell about the first images from Euclid and how not everything worked out exactly as we expected immediately. Everyone working on the project in those days was under enormous pressure to understand the satellite and what was happening out in space. But on the weekends I was happy to take my camera filled with rolls of Tim’s film and walk for miles around town in the baking heat, taking many pictures. Shutter set to 1/250, don’t stop, click. I got close enough. I saw some weird stuff.
I had my zones of predilection. In the Marais you could see all sorts of things if you walked around enough. It is hard taking pictures in Paris: everything here has been worn down, photographed millions of times.
Soon enough, it was winter again, and the gray days were back. Before I knew it, I had my last roll of film in the camera. I was walking across the street. There was some kind of weird glitch. 70 years slipped away. And then it was the last exposure in the roll.
By the end of the year, I had around 30 or so interesting photographs that maybe I wouldn’t have taken if Tim hadn’t sent me that film. They are here. Thanks, Tim!
Tim Vanderweert, author of the Leicaphilia.com blog, left us last week. I couldn’t let Tim’s passing go without comment: like many people, I owe him a lot.
About a decade ago, just after the death of my father (I am sure these events were linked), I started taking photographs and photography more seriously. More intentionally, at least. Some mysterious path led me to film and Leica rangefinder cameras. The first time I held a Leica rangefinder was in a second-hand shop on the boulevard Beaumarchais, and that camera is still the camera I have with me almost every day. But what was going on? Like we do today I searched the internet to understand, and soon enough I came across Leicaphilia.
A revelation! Leicaphilia was easily the most lucid, funny and opinionated website about film, Leica cameras and photography on the internet. The mysterious site administrator was well aware of all the contradictions of using such cameras today. A relief: most photography web-sites take themselves much too seriously. Soon after (January 2016), I wrote an email to Leicaphilia and sent through an article that I though might fit into the Leicaphilia ethos. I was surprised and happy when I received an almost immediate response from the admin (whom I learned was called Tim V) telling me that he’d be happy to run my article in a few weeks.
When I learned later that year that Tim was coming to Paris, I invited him to visit our institute and to come for espresso in my office. In person, Tim turned out to be like you’d expect from reading Leicaphila: immensely knowledgable, opinionated and cultured. But also very generous and encouraging. I showed him around where I work, and we visited the old Observatory buildings. We even got into the normally-closed museum of astronomical instruments after I told the observatory staff that Tim was a visiting specialist of rare optical instruments (which is true!).
Tim met my colleagues and at the end we had espressos once again this time on the IAP terrace. It was a thoroughly enjoyable afternoon. When I told him about my film-developing technique, he arranged for a pack of Diafine developer to be hand-delivered to my office by relatives who were visiting Paris. They came for coffee too, and coincidentally it was a day that we had birthday cake in the office. A big party ! It was a revelation seeing what my rolls of Tri-X looked like in Diafine. In emails since then, Tim promised to keep my in Diafine indefinitely.
Over the next years, I followed Leicaphilia closely. There was no place on the internet you could find such abstruse, challenging and funny content. Tim was trying to work out what all this stuff meant, where photography was going, or not, and it was great to follow along on his journey. Then there were the excellent take-downs of crooks and charlatans like that time he found the mugshots and police records of a couple of scammers who were selling ”black paint” Leica cameras. I was amazed he was able to write so much given that many of the articles seemed to be so deeply researched and knowledgable. Somewhere in there, Tim activated commenting on the site, and those comments were a revelation: it turned out that there was a community of civilised, intelligent people following the site who could have a meaningful conversation without descending into polemic and outrage; very uncommon on today’s internet.
A few times, Leicaphilia went dark or offline: Once Tim was (perhaps) hacked by Scientologist friends of Thorsten O. (frequently a subject of ridicule on Leicaphilia). But often the silences were simply Tim’s centres of interests changing. They made us all realise how much we valued Leicaphilia and how eagerly we awaited Tim’s next idiosyncratic update.
But then, around two years ago after a longer pause, Tim announced he had cancer. I was shocked. It sounded hopeless but after surgery and treatment he recovered and in summer 2021 we met once again in Paris. First at a cafe in the Marais, and then for a meal at our small Parisian apartment. Tim and his wife came as well as two exchange students that they had been hosting at their house. It was a lovely evening. Tim was in great form. He had brought copies of his books for me and we would have talked late into the night if the evening hadn’t been cut short by the results of a faulty COVID test.
For most of the next 12 months, the only update on Leicaphilia was a brief message announcing that Tim was selling his digital Leica. I expected that Tim had been once again zooming around the back roads of North Carolina on his motorcycle. So I was unprepared for the message from Tim in August 2022 telling me that his cancer had returned and this time it didn’t look like there would be an easy escape. I remember around five years ago when I told him I was being treated for a ”minor” cancer (which is now thankfully under control). Tim mentioned that if something like that ever happened to him, he would be frightened. But talking to him after he sent me that message, he seemed more annoyed than frightened. Annoyed that this would happen to him now.
Readers of Leicaphilia know the rest of the story: Tim confounded the doctors by not dying then and there, but living for another four months. And during those four months Leicaphilia was a torrent of posts, often several every day. There was much new material, together with old posts that had been on the shelves. All of them in Tim’s trenchant funny style. He gave so much of the little energy he had left to us, the readers of Leicaphila. He was generous in other ways too: I travelled to the other side of Paris and picked up almost a hundred metres of film that Tim had sent to me via a friend who had been to Tim’s premature ”going-away-party’;.
Leicaphilia was inspirational. In person, Tim was an exceptional character. You don’t meet so many people like Tim in a lifetime. Returning to my apartment the evening after the day Tim died, I found a parcel waiting for me. It was a packet of Diafine that Tim had sent me only a few days before his death. Hail and farewell, Tim, and thanks!
Sometime near the next year or two, hopefully, the Euclid satellite will launch. On-board will be the largest camera ever made for a space mission (although who knows what the spooks and generals have). The entire Euclid optical system has been constructed to produce the most stable, precise and clearest image of the deep Universe: above the murky soup of Earth’s atmosphere image quality is only limited by telescope optics. After launch, Euclid will travel to the solar system’s prime observing spot, a distant place a million and a half kilometres from the Earth. There, the angle of the sunlight falling on Euclid‘s solar panels will be carefully controlled so that the telescope does not expand or contract from the heat of the sun’s rays and therefore, very slightly, defocus the telescope.
But what will Euclid do? At the end of the mission, we will have images covering almost the entire sky not obscured by our galaxy’s clouds of gas and stars. The entire pristine sky right out into the Universe. In those images, there will be a billion faint and distant galaxies. Thanks to the finite speed of light and the fantastic distances of those galaxies, we’ll see them as they were six billion years ago, when the Universe was only half it’s current age.
Between us those galaxies there is the Universe’s invisible scaffolding, a dense web of unknown material — we are calling it Dark Matter for now — which bends light every so slightly. By the time this light reaches Euclid‘s sensitive detectors it will be, ever so slightly, distorted. On an individual galaxy this effect is impossible to see: but averaged over the billions of objects that Euclid will observe, it will provide the most sensitive measurement of how much of this Dark Matter that there was in the second half of the Universe’s lifetime. Coupled with Euclid‘s other instrument, a precise distance-measuring tool, astronomer’s hope to gain some insight into the nature of the force — if it is a force — which is causing the Universes’ expansion to accelerate. To make a new measurement of the geometry of the Universe. Hence the name, Euclid. Worth, indeed, the billion-euro price tag.
But let’s go back. When Lois Daguerre searched for support for the new photographic techniques that he had developed based on the work of Nicéphore Niépce, the astronomer Francois Arago quickly realized the immense potential photography could have for astronomy. Arago arranged for Daguerre’s pension and that the methods he perfected would be made freely available to everyone. For the first time, a permanent, objective record could be made of objects in the night sky. Anyone could analyse the images: never again would a scientific advance be based on a sketch of what someone thought they saw through the eyepiece of a telescope in the dead of night. And before long, the measurement of those images could be handed off to machines, although in those early days maps of the night sky were made by laboriously counting galaxies and stars by hand on thousands of photographic plates.
In the early 1970s, scientists developed the first light-sensitive electronic array detectors, the charge-coupled device (CCDs). In 1976, Janesick and Smith took the first images of astronomical objects with these new highly sensitive instruments. Astronomers were quick to realize the immense potential of CCDs. They were miraculous devices. In astronomy, the most important aspect of a telescope is its light-gathering power — how big the mirror is. The incredible sensitivity of CCDs meant that swapping photographic plates for CCDs meant suddenly that a 2-metre telescope could see objects only accessible to a much-larger 4m-class scope. It was miraculous.
The transition from film to digital for consumer cameras was slower. One year before a CCD camera was first attached to a telescope, Steven Sasson, an engineer at Kodak famously demonstrated the first digital camera to an assembled room of Kodak managers. They didn’t immediately understand why anyone would want to look at an image on a TV screen, but they nevertheless quickly realized the great threat this technology posed to Kodak’s future. Although they allowed Sassoon to continue to work on digital cameras, the orders were to keep them under wraps: they wouldn’t change their minds until it was too late and other companies had successfully brought digital cameras to market. Today, the market for film is one percent of what it was at its peak.
The wave of pixels overwhelmed film cameras in the early 2000s, but even by the early 1990s film photography had almost disappeared from professional astronomy. Emulsions could hold their own against pixels only for huge large images covering large parts of the sky. My Masters’ thesis, a survey of the distant Universe, in fact, relied on data from wide-field photographic plates. But by the turn of the millennium, cameras comprising several detectors joined together became available and the last place where photographic plates were useful in astronomy disappeared. Today, the whole sky has been imaged electronically, and Euclid will provide a revolutionary high-resolution view of the Universe covering most of the sky. This will certainly lead to discoveries not imagined by the telescope planners. No professional astronomer could imagine pointing a photographic plate at the sky and thereby throwing away three-quarters of the photons that crossed half the Universe to get to that photographic plate.
But meanwhile, a strange thing happened. Film photography has refused to die. Sales of film have ceased to decline and companies are working hard to find the right scale at which to produce and sell film. Prices of used film cameras, from disposable point-and-shoot cameras to Leica rangefinders, are steadily increasing. Today, even the pixel-peeping pages of Digital Photography Review runs features about film photography.
Other than the pixels
I have always been interested in photography from when I first took an accidental picture of my own thumb with my parent’s SLR in the 1970s. But in 2015 I felt that I was spending too much time to make images from my digital cameras into something that I felt had some connection to. They seemed plastic and too perfect. I bought a small Olympus XA and then only a month or so after that a used Leica M6TTL at one of the shops on the rue Beaumarchais. Another friend, a professional photographer, very generously gave me his Leica M6 a few years later. He advised me to buy a digital camera if I ever wanted to spend any real money, that would be much better value for money. Today, I am still shooting almost constantly with both cameras.
At the same time, I started to develop film at home, in the kitchen. Since I started I must have tried almost every combination of film and developer. What is wonderful is how each combination can be so different from the others. In the end, a bottle of Rodinal and one of HC110 is good enough for almost anything. Looking at the binders on the shelves here, I see have shot now about 750 rolls of film. Most of them in the streets here in Paris, a difficult thing to do as the city has been photographed so much. After a year since I started, I discovered that there was a darkroom where I work, and I managed to salvage it in the nick of time: I heard later that there were plans afoot to convert it into a storage cabinet. I try to go there at least once or twice a month, or more, to see what I have shot really looks like, because of course looking at an image on a screen is not looking at an image.
I have written about all of this before. I had imagined, back then, when I was starting out, that I would learn what there was to learn about film photography and then switch back to digital: after all film is anachronistic, right?
Two years ago, just as we were coming out of the first wave of the pandemic, I found myself on a certain online auction site looking at cameras. Six months or so without travelling and with the city shut down meant that I felt a little flush with cash. There were one or two cameras out there that I was still a little curious about and which had not been affected by the recent explosive price increases. So I actually bought a digital camera, a Fujifilm XPro-1, and, a week later, a ”’Barnack” Leica, the iiiF, together with a Summitar lens. Average age of both objects: 70 years. Fully functional.
Much has been written about these two cameras on the internet, hundreds of blog articles, there is nothing that I could add here. The XPro-1 is an interesting camera, a simulation of a rangefinder, you can set the shutter speed on a big dial and using one of my Leica-M lenses, the aperture. It can produce instantly crisp images in smooth black-and-white tones. It allows, more or less, taking pictures of the world in a film-photography way (as I explained here). But there is no possible link between that digital image and the darkroom. You take a picture with that camera and it vanishes. It’s dead. What now? I ask myself each time I click the shutter. Despite liking it, I have only taken it out of the house three or four times since I bought it. I am sure it will be useful some time when I have to take pictures in the dead of night to send them around the world minutes later …
But the iiif, now that is an interesting camera. Small and compact. That was from an age when people only put enough in glass in a lens to take a good picture with it printed at normal size, not like today, where lenses are mostly optimised for test charts. When you press the shutter, half of the knobs on the top panel turn instantly, and once again it must be wound forward for the next picture. It certainly cannot be operated with one hand. When I was taking pictures with my Leica M6, someone exclaimed to me ‘That is an old camera!’, to which I replied, showing them the iiif: ‘no, that is an old camera!’. Loading the film requires care, but one quickly learns (I only had problems with one of the forty or so rolls I have shot with it so far).
Soon after buying these two cameras, in early November, it was announced again that we were forbidden to venture no further than 1000 meters from our apartments. Restaurants, bars, and museums were closed. But unlike the first lock-down, this time the parks stayed open. Montsouris is only a few hundred metres from here. This park was created at the end of the 19th century on waste ground filled with tailings from the limestone quarries that were once prevalent in this part of Paris. And there were mice, as the name suggests. A hundred-year-old brownfield site. The next few months I would be confined to the apartment but free to visit Montsouris any time I wished. (Provided, of course, that I didn’t have a Zoom meeting at that time because astronomy continues. There are satellites to launch and research to be done). I soon fell into a routine: I would each a small lunch at midday, and then afterwards I would go for a walk in the park and take my iiif with me. Over the next month or two, I would take hundreds of pictures in Montsouris. Although the parks were open, everyone was wearing masks even outside. After the initial strangeness of this, I soon found it was no fun photographing people because you couldn’t smile at them to let them know that you were non-threatening, an essential thing in a city like Paris. So instead I started talking pictures of dogs.
In astronomy, of course, aesthetics don’t matter. The alignment and arrangement of stars and galaxies on a digital image are not important. It doesn’t look any better if you move the telescope a little to the right. The relevant thing is extracting some fundamental quantitative truth about the Universe from that image. At IAP we have computers filled with hundreds of thousands of images of the sky and our objective is to reduce all that data down to a single table, giving for each object in the image its brightness, distance, mass. Then, compare those tables with predictions of different models to learn what the Universe’s underlying secrets are. And prepare for the immense challenge of doing such a thing with Euclid.
A difficult undertaking all this. What is an object in an astronomical image? With thousands of images, you are not going to look for them one after another yourself. You had better have some way of finding them automatically. You had better be sure that the brightness of the pixels on your images correspond to the real brightness of the objects you’re measuring. A hard problem for electronic detectors, a million times harder for photographic plates. In that difficult transition period of the early 1990s, astronomers often worked with scanned photographic plates, in the same way that film photographers today scan their negatives to share them on the internet. But the characteristics of film photography that some people cherish so much today are deadly for scientists. That gentle roll-off you see in the highlights of a film image? That means that if you want to use bright sources to calibrate your images, you can’t directly apply them to faint sources — which is what most of the objects you are interested in are. That lovely grain that is the soul of a photographic image? An annoying source of noise that limits severely how faint we can see.
Like every medium, astronomers were conditioned by photographic plates into expecting a certain kind of reality. When they first imaged massive galaxy clusters with electronic CCD cameras, they were astonished to see many elongated arc-like structures. These were actually images of distant background galaxies which had been magnified by their light passing through concentrations of dark matter inside the cluster. By measuring these distortions, astronomers could compute how much dark matter was inside the clusters. An astonishing result. But those clusters had already been imaged by photographic plates, they’d already seen the arcs. Scientists thought they were simply defects in the emulsion. Nobody expected to see things like this, so they were not looking for them.
So my everyday job is to distil some essence of the Universe captured into digital images. To abstract reality down to numbers which we’ll then try to fit into a conceptual framework telling us how things really are. And we have to hope that we’ve understood every aspect of the instruments we are using to capture that data. We have to hope that there is no profound truth lurking in plain sight because we don’t recognise it or have discarded it. That’s the challenge at least in Euclid, which will try to measure things that are currently well beyond our ability to measure.
Seeing again
But meanwhile we are in lock-down and I am in Montsouris focussing my 70 year-old Summitar lens on that statue I’ve been taking pictures of almost every day for two months. It’s an overcast day in the middle of November. That means the shutter should be set to f4 or f5.6, exposure time of 1/60s I say to myself. A slow speed. After a few weeks of this, guessing the light seems now to be like smelling the air for rain. You have become sensitised to the natural environment. Slow shutter speeds and low depths of field, I say to myself, but that statue is not moving. I don’t have to turn my camera on because it is always on: a purely mechanical object. I don’t even need to change any settings because today the weather is the same as yesterday.
I don’t care about the grain down there on the emulsion, or capturing in colour, or that I can’t check the image afterwards. You don’t need thousands of ISO to take a picture that you are going to print on a sheet of paper no larger than 30×40 centimetres. My modest 100 ISO film was already a high-speed film when this camera was made. There are no distant galaxies on the other side of the lens and there is nothing I will want to measure in the image. In any case I see what the image will look like after I have taken it, I know how Rodinal will reveal the image frozen in the grains of silver.
My finger hovers over the shutter. I just want to capture this particular instant of light and shade in this particular corner of the park. My eye goes from the little round rangefinder window to the reassuring 50 millimetre-view of the world in the finder window. I am not bringing my eyes too close, of course: I have already scratched my glasses a little on the old metal rim of the finder. How many different ways are there to take a photograph of a statue I wonder? I think of the man who sold me my M6 five years ago, who told me specifically that day that he didn’t want to take pictures of statues. But then there was Eugene Atget, right? And later on, Friedlander too. They both found a new way to take pictures of statues. And if not, well, there are still the little dogs in the park, and they are not wearing masks. Click.
Images in the 21st century: some thoughts on Andre Rouillé’s: “La photo numerique, une force neo-libérale”
I recently read an excellent book about photography in the 21st century, Andre Rouillé’s ”La photo numerique, une force neo-libérale”, published by editions “L’échappée” (who are publishing many interesting books about society and technology). It is probably the most lucid text about modern images I’ve read so far: to me, it describes accurately the current state of affairs. Most classic texts about photographic theory (Sontag, Barthes) have been hopelessly outdated by the arrival of the internet and the profusion of digital images. But this one is right up-to-date (published last year) and is the clearest look so far at the role of images in our modern world. The scope of the book is large: not only does it describe how new technology has changed image-making, but how digital images have become essential to the modern economy.
Let’s start by considering a definition of terms. In English, to describe the two ways we have of making images there is ”analogue” and ”digital” but Rouillé prefers the terms photo-argentique (”argentique” is silver) and photo-digital. This emphasizes that they are really different in kind and nature. Analogue images are fixed and immutable, digital images are constantly changing and are defined by computer code and digits. And most, importantly of all, they can be transmitted instantly anywhere around the world and effortlessly duplicated.
Now, consider how images are captured using with film photography (I’m paraphrasing Rouillé here; he is obviously thinking about rangefinder cameras): one looks through a viewfinder and one decides where to put the frame around an object in the physical world. Now think about capturing digital images with a smartphone, because that is how most digital images are created: one looks at a screen on a rectangular object held at arm’s length. The whole body is involved, not just the eye. The notion of the frame enclosing the physical world has disappeared, and in deciding to frame the photograph one moves the arm and not the head. In the first case, you see the world and not the image; in the second, you see the image and not the world. With a smartphone, it is easy to take multiple images, but you can’t always see the screen in bright light. The result, in the second case, is a profusion of images which do not conform to the conventional idea of photography as a document and an accurate representation of the world. This leads, naturally, to a new aesthetic, one in which crucially images are not at all intended to be a faithful reproduction of reality. The usage of photography today is clearly very different from it was in the 20th century, and by way of example he cites the examples of certain 21st century Magnum photographers whose images turned out to be a less than faithful representation of reality.
So the point to be understood is not at all simply a response to the tired ”film versus digital” question, which after reading the book really seems to me to be missing the point. One can certainly use a digital camera (and here I mean I camera, not a smartphone) in the same way as a film camera, carefully setting the shutter speed, aperture, framing the subject, just as you can also use a film camera like a digital camera — he cites Gary Winogrand as someone who did just that, who took film photographs ”in a digital way”. But today, almost all images are created with smartphones, and these multitudes of images are destined to be shared and distributed on social networks. The way in which these images are captured, and the malleable nature of the object used to take them (a smartphone is no more a camera than it is a telephone, a notebook or a record-player) lead to this radically new aesthetic. I think this is quite different from ”snapshot photography” from the start of the 20th century when the first small portable film cameras appeared; those images were never generated in such large quantities and neither were they circulated so widely around the world.
In the second part of his book, he underlines how important digital images have become for the enormous corporations that have become an integral part of our lives. These digital images created in such great quantities have become an enormous source of wealth for these industries — but not, of course, for those who create the images. These images contain all the attributes of the neoliberal world: instantaneous, constantly changing form and present everywhere. Digital images have become crucial in maintaining the economy of surveillance capitalism.